Optimization

Homework 2

(Due Day: 9:00 AM, Nov 5, 2008, hardcopies in the class)

1. Suppose that we wish to minimize a function $f: \mathbb{R} \to \mathbb{R}$ that has a derivative f'. A simple line search method, called *derivative descent search* (DDS), is described as follows: given that we are at a point $x^{(k)}$, we move in the direction of the negative derivative with step size α ; that is, $x^{(k+1)} = x^{(k)} - \alpha f'(x^{(k)})$, where $\alpha > 0$ is a constant.

In the following parts, assume that f is quadratic: $f(x) = \frac{1}{2}ax^2 - bx + c$ (where a, b, and c are constants, and a > 0).

- **a.** Write down the value of x^* (in terms of a, b, and c) that minimizes f.
- **b.** Write down the recursive equation for the DDS algorithm explicitly for this quadratic f.
- c. Assuming the DDS algorithm converges, show that it converges to the optimal value x^* (found in part a).
- **d.** Find the order of convergence of the algorithm, assuming it does converge.
- e. Find the range of values of α for which the algorithm converges (for this particular f) for all starting points $x^{(0)}$.
- 2. Consider the optimization problem:

minimize
$$||Ax - b||^2$$
,

where $A \in \mathbb{R}^{m \times n}$, $m \ge n$, and $b \in \mathbb{R}^m$.

- a. Show that the objective function for the above problem is a quadratic function, and write down the gradient and Hessian of this quadratic.
- b. Write down the fixed step size gradient algorithm for solving the above optimization problem.
- c. Suppose

$$\boldsymbol{A} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}.$$

Find the largest range of values for α such that the algorithm in part b converges to the solution of the problem.

3. Let $f: \mathbb{R}^n \to \mathbb{R}$ be given by $f(x) = \frac{1}{2}x^TQx - x^Tb$, where $b \in \mathbb{R}^n$ and Q is a real symmetric positive definite $n \times n$ matrix. Suppose that we apply the steepest descent method to this function, with $x^{(0)} \neq Q^{-1}b$. Show that the method converges in one step, that is, $x^{(1)} = Q^{-1}b$, if and only if $x^{(0)}$ is chosen such that $g^{(0)} = Qx^{(0)} - b$ is an eigenvector of Q.

4. Let $f: \mathbb{R}^n \to \mathbb{R}$ be given by $f(x) = \frac{1}{2}x^TQx - x^Tb$, where $b \in \mathbb{R}^n$, and Q is a real symmetric positive definite $n \times n$ matrix. Consider the algorithm

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - \beta \alpha_k \boldsymbol{g}^{(k)},$$

where $g^{(k)} = Qx^{(k)} - b$, $\alpha_k = g^{(k)T}g^{(k)}/g^{(k)T}Qg^{(k)}$, and $\beta \in \mathbb{R}$ is a given constant. (Note that the above reduces to the steepest descent algorithm if $\beta = 1$.)

Show that $\{x^{(k)}\}$ converges to $x^* = Q^{-1}b$ for any initial condition $x^{(0)}$ if and only if $0 < \beta < 2$.

5. Let $f: \mathbb{R}^n \to \mathbb{R}$ be given by $f(x) = \frac{1}{2}x^TQx - x^Tb$, where $b \in \mathbb{R}^n$, and Q is a real symmetric positive definite $n \times n$ matrix. Consider a gradient algorithm

$$x^{(k+1)} = x^{(k)} - \alpha_k g^{(k)},$$

where $g^{(k)} = Qx^{(k)} - b$ is the gradient of f at $x^{(k)}$, and α_k is some step size. Show that the above algorithm has the descent property (i.e., $f(x^{(k+1)}) < f(x^{(k)})$ whenever $g^{(k)} \neq 0$) if and only if $\gamma_k > 0$ for all k.

- 6. Consider "Rosenbrock's Function": $f(x) = 100(x_2 x_1^2)^2 + (1 x_1)^2$, where $x = [x_1, x_2]^T$ (known to be a "nasty" function—often used as a benchmark for testing algorithms). This function is also known as the banana function because of the shape of its level sets.
 - **a.** Prove that $[1,1]^T$ is the unique global minimizer of f over \mathbb{R}^2 .
 - **b.** With a starting point of $[0,0]^T$, apply two iterations of Newton's method. *Hint:* $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$
 - c. Repeat part b using a gradient algorithm with a fixed step size of $\alpha_k = 0.05$ at each iteration.
- 7. Consider the modified Newton's algorithm

$$x^{(k+1)} = x^{(k)} - \alpha_k F(x^{(k)})^{-1} g^{(k)},$$

where $\alpha_k = \arg\min_{\alpha \geq 0} f(\boldsymbol{x}^{(k)} - \alpha \boldsymbol{F}(\boldsymbol{x}^{(k)})^{-1} \boldsymbol{g}^{(k)})$. Suppose that we apply the algorithm to a quadratic function $f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} - \boldsymbol{x}^T \boldsymbol{b}$, where $\boldsymbol{Q} = \boldsymbol{Q}^T > 0$. Recall that the standard Newton's method reaches the point \boldsymbol{x}^* such that $\nabla f(\boldsymbol{x}^*) = \boldsymbol{0}$ in just one step starting from any initial point $\boldsymbol{x}^{(0)}$. Does the above modified Newton's algorithm possess the same property? Justify your answer.